Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding the petrological and geochemical processes shaping the Moho transition zone (MTZ) is crucial for advancing our knowledge of thermal and chemical exchanges between the oceanic crust and the residual upper mantle. In this study, we systematically investigate the MTZ outcropped within the Zedong ophiolite, located in the eastern part of the Yarlung-Tsangpo Suture Zone (YTSZ), with the aim of at reconstructing the magmatic processes responsible for generating the petrological Moho. The Zedong MTZ comprises a sequence of dunite, wehrlite, pyroxenite, and gabbro, with frequent occurrences of clinopyroxene-rich lithologies. Cyclicity within the MTZ sequences is characterized by the recurrence of olivine-rich intervals and the presence of zig-zag patterns in both major and trace elements of clinopyroxenes. Zircon Usingle bondPb dating on the Zedong gabbros supports the coeval formation of the Zedong ophiolite with other YTSZ ophiolites. Clinopyroxene in the Zedong MTZ follows a differentiation sequence characterized by an increase in contents of Al2O3 and TiO2, coupled with a decrease in Mg#. This differentiation sequence along with frequent occurrences of amphibole suggest the evolution of a primitive hydrous melt depleted in Al2O3, TiO2, and Na2O. The depleted Ndsingle bondHf isotopes and rare earth element patterns of the MTZ rocks indicate that their parental magmas originated from fluid-enhanced re-melting of a previously depleted mantle. Additionally, we proposed that the initiation of a new subduction zone results in the re-melting of the mantle peridotite, leading to the formation of primitive hydrous basaltic melts. The variable lithologies observed in the Zedong MTZ arise from fractional crystallization and repeated replenishment of hydrous melts.more » « less
-
Abstract Although the Cenozoic Indo-Asian collision is largely responsible for the formation of the Tibetan plateau, the role of pre-Cenozoic structures in controlling the timing and development of Cenozoic deformation remains poorly understood. In this study we address this problem by conducting an integrated investigation in the northern foreland of the Tibetan plateau, north of the Qilian Shan-Nan Shan thrust belt, NW China. The work involves field mapping, U-Pb detrital-zircon dating of Cretaceous strata in the northern foreland of the Tibetan plateau, examination of growth-strata relationships, and construction and restoration of balanced cross sections. Our field mapping reveals multiple phases of deformation in the area since the Early Cretaceous, which was expressed by northwest-trending folding and northwest-striking thrusting that occurred in the early stages of the Early Cretaceous. The compressional event was followed immediately by extension and kinematically linked right-slip faulting in the later stage of the Early Cretaceous. The area underwent gentle northwest-trending folding since the late Miocene. We estimate the magnitude of the Early Cretaceous crustal shortening to be ~35%, which we interpret to have resulted from a far-field response to the collision between the Lhasa and the Qiangtang terranes in the south. We suggest that the subsequent extension in the Early Cretaceous was induced by orogenic collapse. U-Pb dating of detrital zircons, sourced from Lower Cretaceous sedimentary clasts from the north and the south, implies that the current foreland region of the Tibetan plateau was a topographic depression between two highland regions in the Early Cretaceous. Our work also shows that the Miocene strata in the foreland region of the northern Tibetan plateau was dominantly sourced from the north, which implies that the rise of the Qilian Shan did not impact the sediment dispersal in the current foreland region of the Tibetan plateau where this study was conducted.more » « less
An official website of the United States government
